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1st Technical Report 

Jan 1 - July 31, 1971 

"Studies of Electron States in Structurally Disordered Materials 

Using Simple Liquids and Dense Vapors as Prototypes." 

"Views and conclusions contained in this document are those of the 

authors and should not be interpreted as necessarily representing the official 

policies, either expressed or implied, of th" Advanced Research Projects Agency 

or the U. S. Government." 

Summary 

During the first six months of this grant we concentrated on the 

theoretical aspects of the problem.  (The experimental phase Involved primarily 

the setting up of apparatus). Three problems were investigated and these were: 

1) Monte Carlo calculations of transient photocurrents; 2) Electron drift in 

very dense helium; and 3) Electronic structure of a one dimensional disordered 

array of 6-function potential. 

Using a simplified Monte Carlo approach we have been able to calculate 

the main features of the experimentally observed transient photocurrent in 

amorphous selenium and arsenic trlselenlde. We included in this calculation 

surface trapping and release as well as bulk trapping and release. 

Following the recently published calculations of Eggarter and Cohen, 

we have begun a calculation on the temperature and density dependence of the 

drift mobility of electrons in very dense helium. To date our calculations 

(2) 
are in agreement with the data of Harrison and Springett   over a temperature 

range of 40K to 180K. 

(3) 
We have applied the Wu-Dy   method to calculate the density of states 

for an electron in a one-dimensional disordered array of attractive 6-function 

potentials. The results are in excellent agreement with those obtained using 



(4) 
the node-counting method of Lax and Phillips.    Our method has the advantage 

in that it r-.an easily be extended to three-dimension. 

Methods and Results 

The general methodology and results of the works summarized above are 

given in the following three sections: 

I. Monte Carlo Calculations of Transient Photocurrents 

The detailed description of this work is contained in two papers, one is 

published in the Phys. Rev. Letters 27^ 21 (1971), the other was reported at 

the Fourth International Conference on Amorphous and Liquid Semiconductors. 

(The conference proceedings will be published in the Journal of Non-Crystalline 

Solids.) Both these papers are attached below for reference. 

II. Mobility of Excess Electrons in Helium Gas — Density and Temperature 

Dependence. 

The recent theory of Eggarter and Cohen was used to calculate the 

mobility of excess electrons in dense helium gas as a function of gas density 

and temperature. The results were then compared with recent experimental 

(2) 
measurements of Harrison and Springett. 

The low field mobility was obtained from 

u(pT) , f U(E) n(E) e-E/kT dE 

/n(E) e *'**  dE 

and displayed In Fig. 1 as best fits to the experimental results along with 

calculations designed to show the sensitivity of the theory to the adjustable 

parameter c.    It should be pointed out that only for p < 1 cm sec v 

were there any appreciable contributions due to the motion of trapped electrons. 

The mobility drop with density is due to the decrease of the number of electrons 

in extended states. 

"■»~*>*m>4mmmimk^ 



As can be seen the density dependence of the mobility Is In good agree- 

ment with experiment except for the over estimate at the low density region 

shown due to neglect of scattering by clusters of atoms smaller than the rms 

deviations from the average number of atoms in each cell.    The temperature 

dependence is forced to agree by the variation in c. 

These calculations will be extended to include the Hall effect and the 

high electric field regime. 

III.  Electronic Structure of a One-diroeasional Disordered Array of 

6-function potential. 

In our calculation, we considered arrays having short range order as 

defined by Gubanov in the following way: The distance between each pair of 

neighboring atoms is taken to be a(l + ey), where a is the average interpartlcle 

spacing, e is a positive number less than one (called the short range order 

parameter) and y is a random number having a Gaussian distribution with(Y) = 0, 

2 
and (Y ) ■ 1. 

The Hamiltonian we consider is given by 

P2 

2m   ^ o 

where V is a positive number which defines the strength of the potential and 

I  denotes the atomic sites. The tight-binding wavefunction is taken to be the 

eigenstäte 
mV      mV 

of 

with eigenvalue 

For simplicity we set w equal to -1. Using cp one easily computes for the 

't " ^2    eXpt"    2 •h                  ti 

2 
h. s ^-V06(x-O 

w    = 
mV 2 

0 

' a2   " 
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matrix elements of the total Hamlltonlan: 

HU'  =w6U' + 2wS  exp{-|(|jl" -£| + |JI"-Ä'|)} 

where 
mV 

A = —j- a, defines the degree of overlap of the wave 
h 

functions.  Using H  t, we calculated the following quantities needed In the 

(3) ~ ~ 
Wu-Dyv ' method:  V(k), U(«.,k), R,,, and W.t, • We then calculated the Greens 

function using the direct summation of the band propagator expansion: 

<G(k.z)> = z_V(k) '<z(k>z)>c 

where 

^k'2»c " <\k>c + ^<V<5(k,'z)>Vk>c +-- 
k' 

and ( ) is the cummulant average. We truncated the series for the proper 

self-energy £ at the second term and solve for G selfconslatently. The 

density of states is then calculated from G by 

n(E) - ^ I Im<G(k,z -^ E + i0+)) . 
k 

In the following Fig.2 we show the integrated density of states N(E), i.e., 

the number of states with energy less than E, for the case of c * 0.05 and 

A * 10. The calculation was carried out with 30 particles and averaged over 

20 randomly chosen configurations. The figure shows clearly the detail of the 

band tall and the agreement with the node-counting method is excellent. Inves- 

tigation of systems with larger degree of disorder and the effect of the trunca- 

tion of the self-energy series is now in progress. 
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Monte Carlo Calculation of Transient Photocurrent In 

Low Carrier Mobility Materials* 

M. SILVER, K. S. DY and I. L. HUANG 

University of North Carolina at Chapel Hill 

ABSTRACT 

A Monte Carlo method Is used to calculate the shape 

of the transient photocurrent under flash excitation. It 

Is shown that some of the anomalous features of the experi- 

mental data can be explained by Including surface as well as 

bulk trapping In the model. In particular, this simple 

pic' ire predicts the observed long tall of the pulse as well 

as the apparent field dependence of the mobility. 

*Work supported by the Army Research Office of Durham and the 

Material Research Center, under Contract No. SD-100 with the 

Advance Research Project Agency. 
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In recent years transient photocurrenti) have been examined very 

successfully In low mobility material. Our present day understanding of 

1 2 
the electronic properties of organic and molecular crystals and amorphous 

3 
semiconductors result largely from interpretation of such experiments. 

In addition to obtaining information on drift mobilities, data on trapping 

cross-sections were also obtained. 

One problem persisted however and that was that the theoretical 

pulse shape was not always observed even in the same material. Typical 

photocurrents are shown in figure 1. There we show in figure 1A a curve 

obtained from anthracene which closely resemble the theoretical pulse 

shape. Figure IB shows another pulse obtained from anthracene with a 

different electrode. Finally figure 1C shows a typical pulse obtained 

from As»Se„. Noticeable in figure IB and 1C are very long tails after a 

break in the curve which ostensibly represents the transit time. 

4 
This long tail prompted M. E. Scharfe to suggest that it was due 

to a dispersion in the arrival time of the carriers due to a distribution 

of mobilities. This interpretation seemed physically unsound because it 

implies that different carriers sample different density of states or 

different traps. This would be equivalent to having parallel strips of 

different materials. 

We propose a different and physically more sound model and that is 

that the generated carriers in addition to being trapped in the bulk may 

also be trapped at the illuminated surface. The surface trapping is 

equivalent to a delay in the carrier generation. 

In order to Illustrate that such a simple process can give the desired 

pulse shape, we further simplify the model by assuming that there is only 



one crapping level In the bulk and only one level at the surface. It 

Is not significantly more difficult to include a distribution of levels 

and even surface recombination.  (Calculations including these cases 

are presently being undertaken.) 

In order to calculate the current pulse we have chosen to use a 

simplified Monte Carlo approach rather than solve the continuity of current 

equation. We took this approach because we wanted to make as few mathe- 

matical assumptions and approximations as possible. 

In the Monte Carlo approach we only tuvve to choose a trapping 

probability and an escape probability. We do not have to be concerned 

with equilibrium between the trapping states and the conduction band at 

any tlu.8 from t - o to t ■ ». Any approach to equilibrium will automatically 

come about through the statistics. 

This calculation is extraordinarily simple. One first chooses a 

surface trapping probability and this is just N./CN.-fN.) where N is the 

number of carriers trapped at the surface, and ND + N. is the total number 

of carriers. 

The K carriers are instantaneously injected into the bulk and using 

a set of random numbers we can follow the history of each one. The 

sequence of events are: 

first trapping time : tT(l) - - T^r^l) 

first emptying time : 'e^ " ~ Tft^re^1^ 

nth trapping time  : tT(n) - - Ta^,rT(n) 

nth emptying time  : te(n) - - Tg^,re(n) 

10 



where x and T. are the characteristic trapping time and emptying time 
a    p 

m 
for bulk traps. This sequence Is continued until £ t-(n) ■* t /y, 

n-1       0 

where t /y Is the transit time (y la a parameter which plays the role 

of the applied voltage and t Is a fixed constant). The trapping time 

for the final event tT(m) usually has to be cut short to make the sum 

exactly equal to t /y. The values of rT(n) and r (n) are random numbers 

generated by a computer. By following each particle we can tell at any 

time how many are free and the sum of these Is proportional to the current. 

The procedure for the N particles Is the same as for the N, particles 

except that the first event Is a surface trap emptying one with a dis- 

tribution of emptying times given by t (1) ■ - x far  (1), x being the 
s       Y  8     Y 

characteristic release time for surface traps. Figure 2 shows a set of 

the results for the number of free carriers at a given time t plotted 

against yt for N- - 1003, N ■ 7000, and y - 0.1 through 2.5. In all 

-4 -3 
cases, we have chosen the values x » x - 4 x 10  sees. Tn = 10  sees 

' o   Y ß 

and t ■ 10  sees. We see that only at high voltages does one get a 

break In the curve at yt ■ t . Further, It had previously been assumed 

that by measuring the decay of the current before the break one could 

obtain Information on the trapping time. As can be seen neither t nor 

x are derivable by such simple procedures as observing the decay and the 

break point. 

Finally one can plot the reciprocal of the apparent transit time 

(the break point t.) versus the applied voltage. These results are shown 

In figure 3. There Is an apparent field dependent mobility which Is 

nothing more than a transition from the trap controlled to the trap free 

case with Increasing voltage. This curve Is very similar In shape to 

11 
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3 
that obtained by Tabak who postulated a field dependent mobility to 

explain the results. 

We conclude from these calculations that the so called complicated 

drift experimental results obtained on amorphous materials such as 

A«?Se» may In fact be very simple and Involve well known processes. 

Further, to derive the mobility and the trapping times one must study 

the current pulses In detail as a function of field and temperature. 

12 
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Figure Captions 

Figure 1. Typical transient current pulses excited by weak Intensity 

strongly absorbed light Incident upon anthracene (A), (B) 

and A82Se, (C). Curve (C) Is taken from Fig. 5 of ref. (3). 

Figure 2. Plot of the current versus time multiplied by the voltage 

parameter y obtained from a Monte Carlo calculation for a 

»4        -3 
system with N- - 1000, 1L - 7000, T - T - 4 x 10  , T - 10 , 

_3 
and t - 10 . The yt axis Is In units of t . 

o ^ o 

Figure 3. Plot of y/tB versus y where t- Is determined from the break 

In the current pulses as shown In Fig. 2. 
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MONTE CARLO CALCULATIONS OF TRANSIENT PHOTOCURRENTS* 

M. Silver, K. S. Dy, and I. L. Huang 
University of North Carolina at Chapel Hill 

Abstract 

In this paper we show the results of a simple Monte 

Carlo calculation simulating transient photocurrents In 

low mobility material. We have applied these calcula- 

tions to four different distributions of bulk traps for 

various temperatures and applied fields. 

Recently we have shown that using an elementary Monte Carlo approach 

we can calculate the main features of the experimentally observed transient 

photocurrent in low mobility material. These features include a long tail 

after the break point of the current pulse (which was assumed to be the 

arrival of the main burst of charge) and an apparent field dependence of the 

mobility. We assumed that bulk trapping, bulk trap release and surface 

trapping and release are all active. 

In this paper we discuss the results of additional calculations 

Including temperature and field dependence of the pulse for four different 

distributions of bulk traps. The four distributions are I) single level, 

» 
Supported by the Advanced Research Projects Agency of the Department 

of Defense and monitored by the U.S. Army Research Office - Durham, under 

Grant number DA-AR0D-3I-I24-71-652, and by the Materials Research Center, U.N.C. 

under Contract DAHCI5-67-C-022i with the Advanced Research Projects Agency. 



half gaussian centered at zero with a half width equal to half the single 

level energy of (I), 3) exponential with a characteristic energy equal to 

half the energy of (I), and 4) uniform with a cut-off at the single level of 

(I). The cross section of all traps was assumed to be the same. 

In reference (I) we Indicate the main features of the calculation. 

The duration of a particular trapping or trap release event Is given by: 

t (n) » -T In r (n) (I) 

where r.(n) Is a random number between 0 and I generated by the computer. 

In order to change temperatures It was only necessary to make those T.'S 

which involve trap emptying processes temperature dependent. When there 

was a distribution of bulk traps the energy E of the n  level that was 

filled by a particular trapping event was determined by a random number r 

and the distribution function. For example for a uniform distribution, 

E- ■ 0.1 r.. for an exponential distribution E^ = -0.05 in r. and for the n     n       r n n 
1/2 

simple gausslon E =,05C-ln r 1  . The emptying time for any particular 

level was, of course, proportional to expCE /kTj. 

We have assumed that 00% of the particles are initially trapped at 

the surface with trapping energy of 0.085 e.v. while the remainder are 

instantaneously released into the bulk. We have also used a least square 

fit to the calculated curve whenever possible to minimize fluctuation and 

reduce computer time. » 

In this short paper we cannot give all the detailed results of the 

calculation. To Indicate some of the effects we show in Fig. I and 2 the 

current vs time curves for several voltages for the case of the single level 

trap at 200*K and 250*K, In Figure 3-5 we show the curves for the other 
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three distribution of traps at 200 0K. In most cases an apparent transit 

time indicated by the vertical arrow on the curves can be determined. The 

only exceptions are the low voltage curves In the case of the exponential 

distribution. From Fig. 1-5, we see that there Is an apparent field 

dependence of the mobility In the cases of the single level and gaussI an dis- 

tribution while In the uniform and exponential case no field dependence were 

found except perhaps at the lowest voltages. In Fig. 6 and 7 we show the 

reciprocal of the apparent transit time vs voltage for the single level and ' 

the gauss Ian case. 

It Is not hard to understand why the uniform and exponential distri- 

butions exhibit almost no field dependence over the range of temperatures 

considered. When there are relatively few trapping events, the drift is 

determined by the emptying time of the more probable trapping level. For 

the distributions used, the more probable levels are at very low energy and 

emptying does not appreciably slow down the carriers at these tempera- 

tures. We have calculated the drift for the uniform distribution at I250K. 

We did see a field dependence here because even the shallow levels have a 

long emptying time. Also at very much lower voltages than those considered 

here, the number of trapping events becomes very large and one would expect 

that the drift would be determined by the very deep levels where emptying Is 

slow. In this case one should again observe an apparent field dependence. 

These calculations have not as yet been tried although the lowest voltage 

curve for the exponential case seems to bear this out. 

Finally, for the cases of the single level trap and.the gaussIan we 

show In Figs. 8 and 9 the log of the break point vs the log of the voltage 

for several temperatures. As expected the lower temperatures show a fatter 

20 



dependence of the transit time on voltage than the higher temperatures. 

2 3 This Is similar to what Tabak found In amorphous selenium and Scharfe in 

As^Se.. 

To date, the main conclusion that we draw from these calculations 

is that unless the Idealized pulse shape Is obtained In an experiment, 

deriving Information on the transport parameters Is very tenuous. For 

pulses with lone« tails one must make a careful study of the transit time 

as a function of field, temperature, and thickness (magnitude of transit 

time) of the material. 
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FIGURE CAPTIONS 

Figure I. Current vs time. The unit of time for each curve was 10 /y sec. 

-4 
The trapping time was 4 x 10  sec. The trap emptying time for 

bulk traps was 10* sec at 200oK and for the surface traps was 

-4 
4 x 10  sec.  This curve was obtained without a least square 

fit. y Is a parameter proportional to the applied voltage. 

Figure 2. Current vs t!me. The unit of time for each curve was 10 /y 

sec. h  least square fit was used, y Is a parameter proportional 

to the applied voltage. 

Figure 3, Current vs time. The unit of time for each curve was 10" /y sec. 

A least square fit was used, y Is a parameter proportional to 

the applied voltage. 

Figure 4. Current vs time. The unit of time for each curve was 10" /y sec. 

A least^square fit was used, y Is a parameter proportional to 

the applied voltage. 

Figure 5. Current vs time. The unit of time for each curve was 10" /y sec. 

A least square fit was used, y is a parameter proportional to 

the applied voltage. 

Figure 6. Reciprocal of the apparent transit time tB/y vs y. 

Figure 7. Reciprocal of the apparent transit time tD/y vs y. ö    -      j 

Figure 8. Log-log plot of the reciprocal of the apparent transit time vs y. 

(The 300oK curve has been displaced slightly for clarity.) 

Figure 9. Log-log plot of the reciprocal of the apparent transit time vs. y. 
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